Q1.

4 (a) metaphase;
II; (allow one mark for telophase and two marks for telophase 1)
2

(b) ref. spindles/microtubules shorten contract/pull/breakdown; centromeres divide; choromatids (pulled) apart; to opposite poles; chromosomes unwind/AW; nuclear membrane reforms; ref. cytokinesis/cleavage;

4 max

(c) independent/random assortment; of homologous chromosomes; different combinations of parental chromosomes; crossing over/chiasmata; between chromatids of homologous chromosomes/non-sister chromatids; breaks up linkage groups/mixes alleles from parents; R genes ref. to non-identical/genetically different gametes;

4 max

Total: 10

Q2.

5 (a) phenotype is the feature/characteristic; results from interaction of genotype and environment on organism/ environment may alter the appearance of an organism; genotype unaffected by environment; genetic characteristics inherited/passed on to offspring/ora/represents alleles possessed;

2 max

 (b) artificial selection carried out by humans; choose organisms with useful characteristics/benefit to humans; natural selection carried out by environment; ref. survival (to breed); ref. evolution;

3 max

(c) (i) length of DNA/sequence of bases/locus on a chromosome; coding for a characteristic/protein/polypeptide/enzyme;

2

(ii) alternative form of a gene;
 determining contrasting characters/controls one form of a character;
 occupies same locus;
 ref. sequence of bases;
 ref. dominance;

3 max

Total: 10

Q3.

Question 5

(a)					
black female	X	orange male			
X_BX_B		X°Y;			
tortoiseshell female		black male			
X^BX^O		X ^B Y;*			
orange female	X	black male			
x°x°		X ^B Y;			
tortoiseshell female		orange male			
X^BX^O		X°Y;*			
(* must also have eit	her gamete	s / construction lines / punnet square)			
(b)					
tortoiseshell female					
X ^B X ^O ;					
black female					
X^BX^B ;					
black male					
X ^B Y;					
orange male					
X°Y;					
(phenotypes and genotypes must be linked otherwise max 2). (penalize once for lack of gender).					

(b)		
tortois	seshell female	
X_BX_Q		
black	r female	
$X^B X^B$		
black	c male	
X^BY ;		
orang	ge male	
X°Y;		
	notypes and genotypes must be linked otherwise max 2). alize once for lack of gender).	
(c)	X chromosome inactivated randomly early in development / AVP ;	
		1
	Tot	al:9

Q4.

Que	estion			Marks
2	(a)		metaphase 1 / (late) prophase 1; R early / middle	1
	(b)	1	ref. (homologous chromosomes) pairing / synapsis;	
		2	ref. to chiasma / crossing over;	
		3	exchange of genetic material;	
		4	between non-sister chromatids / AW;	3 max
	(c)	1	breakage of linkage groups / ref. new linkage groups;	
		2	may have different alleles;	
		3	creates new combinations of alleles;	
		4	when sister chromatids separate;	2 max
	(d)		ref. idea of random orientation at metaphase I and II / random alignment of homologous chromosomes on spindle equator;	
			subsequently leads to independent assortment;	
			2^n possible combinations when n is number of chromosome pairs ;	
			ref. to chromosome mutation qualified;	
			extra detail;	
			ref. gametes haploid (so can fuse);	
			random fusion of gametes ; N.B. 3 sets of 2/3 marks	4 max Total: 10

Q5.

5	(a)		parental genotypes; e.g. AaBb x AaBb gametes; correct use of punnett square; F1 genotypes; F1 phenotypes; (must link to genotypes) yellow and sphere ¹ / ₁₆ ;	[6]
	(b)	(i)	contract / die from, malaria ;	[1]
		(ii)	contract / die from, sickle-cell anaemia ;	[1]
	(c)		resistant to malaria; detail; more likely to survive; and reproduce;	[2 mov]
			pass on sickle-cell allele ;	[3 max]
				[Total: 11]

Q6.

7	(a)	both alleles, influence pheref. more than 2 phenotype phenotype of heterozygote	es possible ;		[3]
	(b)	son receives Y chromosor Y chromosome does not of father will pass haemophil daughter will be, a carrier daughter may pass allele	arry haemophilia allele ia allele to daughter(s) / heterozygous / X ^H X ^h ;	;	[3 max]
	(c)	(i) (male) C	BCBXaXa; x (female) C ^W C ^W X ^A Y;	
		(gametes)	C ^B X ^a	$C^W X^A$ or $C^W Y$;	
			C ^W X ^A X ^a ; ue, barred) (fe	C ^B C ^W X ^a Y ; emale, blue, non-barred)	
				es and offspring genotypes to ma to max 2	ax 2 [5]
(ii) b	ue colour is heterozygous	/ CBCW ;		
	te	st cross ; ith non-barred female ;			
		all offspring barred, must some offspring non-barred			[3 max]
				רו	otal: 14]
Q7.					
6	(a)	allele (different) form of a gene;	A variety / version ignore refs to locus /	mutation	[1]
		recessive allele which does not hav homozygote / affects pheno		gote / allele which (only) has it is absent;	s effect in [1]
	(b)	gene / allele, on X chromos	some / sex linkage;		
		female, needs 2 RGC allele	es / homozygous recess	sive / can be heterozygous;	
		male needs 1 RGC allele;			[2 max]

```
(c) 1 - XRXr / Rr;
        4-XRY/R/R°/R-;
        6 - X^{r}Y/r/r^{o}/r_{-};
        7 - X^R X^r / Rr;
                                                                                                  [4]
        if X and Y not used then mark to max 3
                                                                                            [Total:8]
Q8.
  7 (a) key; black upper case, chestnut lower case
          gametes;
          offspring genotypes and chestnut identified;
          25% / 0.25 / 1/4 / 1 in 4, (probability); ignore ratios
                                                                                               [4]
      (b)
                                       aaCCCCR
                                                                     AaCC
          parental genotype
          parental phenotype
                                   palomino / cream
                                                                    black;
                                            aCCR
                                   aC
                                                            AC
          gametes
                                                                             aC;
                                                                           aaCCCR;
                                                         AaCCCR
          offspring genotypes
                                 AaCC
                                            aaCC
                                                                   any order
          offspring phenotypes
                                                                      palomino / cream;
                                 black
                                          chestnut
                                                          black
                                                          order linked to genotype order
          ecf can be applied to offspring genotypes and phenotypes
                                                                                               [4]
                                                                                         [Total: 8]
```

Q9.

6 (a) change in, DNA/base sequence;
produces different <u>allele</u>;
ref. different, protein/polypeptide, produced;
[2 max]

(b)
$$1 - X'X^r$$
;
 $3 - XY'$;
 $9 - X^RX'$;
 $10 - X^RY$; [4]

- (c) answers must refer to phosphate ions
 - 1 altered shape/non-functional/no, carrier protein;
 - 2 less/no, reabsorption of phosphate ions (into blood);
 - 3 from, glomerular filtrate/lumen of/proximal convoluted tubule;
 - 4 more/all, phosphate ions excreted;
 - 5 low phosphate ion concentration in, blood/bones; R no phosphate ion conc [2 max]

[Total: 8]

Q10.

```
6 (a) 1 allele/gene, found on X chromosome;
            females have two copies of, allele/gene;
        2
           males have only one copy of, allele/gene;
                                                                                        [2 max]
    (b) key to symbols
                         Xa (= allele for CI)
        recessive allele
        dominant allele
                         XA (= allele for normal iris);
        cross 1
                                  male with CI/cleft iris
                                                          and normal female ;
        parental phenotypes
        gametes
                                   X<sup>a</sup> or Y
                                                                   all XA;
                                                             XAY;
        offspring genotypes
                                            XAXa
        offspring phenotypes
                                       normal female
                                                            normal male;
                                              or
        cross 2
        parental phenotypes
                                  male with CI/cleft iris
                                                              and normal female ;
                                                                   XA or Xa;
        gametes
                                   X<sup>a</sup> or Y
        offspring genotypes
                                XAXa
                                            XAY
                                                              XaXa
                                                                              XªY;
        offspring phenotypes normal
                                            normal
                                                            cleft iris/CI
                                                                             cleft iris/CI
                              female
                                            male
                                                            female
                                                                             male ;
                                                                                             [5]
    offspring phenotypes must be linked to genotypes
    (c) 1 in 4/25%/0.25; R ratios
                                                                                             [1]
                                                                                       [Total: 8]
```

Q11.

6 (a) enzyme acts on only one substrate; shape of active site is complementary to substrate; AVP; e.g. substrate held by temporary bonds / ES complex

[2 max]

(b) symbols (must be of same letter); parental genotypes and gametes; offspring genotypes and phenotypes linked;

[3]

- (c) 1. insulates axon (membrane);
 - 2. depolarisation occurs only at nodes (of Ranvier) / AW;
 - 3. local circuits;
 - saltatory conduction / AW;
 - 5. speeds transmission of, action potential / impulse;
 - AVP; e.g. speed increases up to 50 times / 100ms⁻¹

[3 max]

[Total: 8]

Q12.

7 (a)_____

nuclear division	letter of stage
	В
	E
meiosis I	J
meiosis i	Н
	F
	D
	G
meiosis II	T.
11101001011	С
	Α

EJHF all in meiosis I; EJHF in correct order;

GICA all in meiosis II; GICA in correct order;

[4]

- (b) 1. chiasma / crossing over;

 - between non-sister chromatids;
 homologous chromosomes / bivalents; in correct context of mp1 or mp8
 in prophase I;

 - 5. exchange of genetic material / AW;
 - linkage groups broken;
 - new combination of <u>alleles</u>;
 - independent assortment; R random assortment
 - 9. in metaphase I;
 - 10. detail of independent assortment;
 - 11. AVP; e.g. possible mutation

[5 max]

[Total: 9]

Q13.

 (a) gene mutation spontaneous / random, change; in, base sequence / nucleotide sequence / mRNA code / codon; example; e.g. addition / insertion / substitution / deletion / inversion triplet code (sequence of) three (DNA nucleotide) bases; complementary to mRNA codon; codes for a specific amino acid; 								
	(b)	parental phenotypes	man without HD	woman with HD				
		parental genotypes	tt	Tt				
		gametes	all t	Tort;				
		offspring genotypes	Tt	tt				
		offspring phenotypes	Huntington's disease	normal;				
		probability of first child I	having D 50% / 0.50 / 1 in 2;		[3]			
					[Total: 7]			
Q14.								
	(a)	correct symbols; e.g. X	(A = (allele for) red-eye (a = (allele for) white-eye					
		parental genotypes	X ^A X ^a and X ^a Y;					
		gametes	X^A X^a X^a Y ;					
		offspring genotypes	$X^A X^a X^A Y X^a X^a X^a Y$;					
	offspring phenotypes red-eyed red-eyed white-eyed white-eyed female male female male ;							
	(b)	(i) passes Y chromoso	me onto son / passes X chromos	ome onto daughter;	[1]			
		(ii) heterozygous;			[1]			
	(iii) gene / allele, mutation	on ;		[1]			
					[Total: 8]			

Q15.

produces gametes with different genotypes; max 1 genotype alleles present in an organism / particular alleles of a gene / genetic constitution / AW; [2] (b) parental genotypes AaDd x AaDd; gametes AD Ad aD ad x AD Ad aD ad; two marks for correct Punnett square ;; deduct one mark for each mistake (all 4) phenotypes linked correctly to genotypes; (probability of yellow offspring) 3 out of 16 or 0.19 or 19%; [6] [Total: 8] Q16. 7 sex-linked (a) (gene) carried on, one sex chromosome/X, and not on, the other/Y; section of DNA/sequence of nucleotides/sequence of bases, [2] that codes for a (particular) polypeptide; (b) parental tortoiseshell female black male phenotypes XBXO XBY; parental genotypes XB xo XB Y; gametes X^BX^B X°Y; X^BY X^BX^O offspring genotypes tortoiseshell offspring black black orange female [4] phenotypes female male male; (c) tortoiseshell is heterozygous; males, heterogametic/only one X chromosome; (therefore) only one copy of gene/only black or orange allele present; [max 2] [Total: 8]

two different alleles of a gene / different allele pair for a gene / AW;

7 (a) heterozygous

Q17.

7 (a) W^R = allele for warfarin resistance W^S = allele for warfarin susceptibility

parental resistant male resistant female phenotypes WR WS WR WS parental genotypes WR WS gametes WR WR WS WS ; WR WS offspring genotypes offspring resistant resistant resistant susceptible; phenotypes

- (b) not enough Vitamin K found (in the wild) / require too much Vitamin K; [1]
- (c) competitive / reversible;

as the concentration of inhibitor increases, the rate of the (inhibited) reaction decreases

or

as dose of warfarin increases, the rate at which blood clots decreases; ora [2]

- (d) 1. different, codon / triplet;
 - 2. stop codon;
 - 3. different amino acid;
 - 4. different, primary / secondary / tertiary / 3D, structure;
 - 5. shortened, polypeptide / protein;
 - 6. change in function of protein; [3 max]

[Total: 9]

[3]

Q18.

(a) metaphase ;		•	
metaphase;			
			1
(b)			
centromeres divide / splits; R break			
chromatids separate;			
idea movt. to opposite poles / centrioles;			
by microtubules / spindle fibres;			
idea.mechanism of movement;			3 max
(c)			
(i)	67	2.50	- 97
breaks down / disperses ;			1
(ii)			
centrioles divides/replicate;			
to form two pairs (of centrioles);			
move to (opposite) poles;			2 max
(d)			
1 random alignment / independent assortment / or description; different mix of maternal and paternal chromosomes/chromatide	s;		
2 crossing over / chiasmata formation/exchange of genetic materi between chromatids of homologous chromosomes; breaks up linkage groups / mixes maternal and paternal alleles;			W.
In 1 or 2 ref. different gametes produced;			4 max
			Total: 11

Q19.

```
Question 5
     Either
    If genetic diagram used
                                       Penalise once for incorrect symbols
                                       orange dominant to black (or converse);
     orange scallop
     parents
                                       So
     gametes
                                                                                Sb Sb
                                       S° S°
                                                     S° Sb
                                                                  Sº Sb
     genotype
                                                   orange
     phenotype
                                                                                black
                                                                                                     ;
     black scallop
                                                                         Sb Sb
                                              Sb Sb
                                                           X
                                                                                                     ;
     parents
                                                            Sb
                                                                         Sb )
                                                     1
     gametes
                                                            Sb Sb
     genotype
     phenotype
                                                            black
     If text explanation given
     orange dominant to black (or converse);
     orange are heterozygous;
     (because) ref. 3:1 ratio;
     link data to ratio;
     black are homozygous;
     because all offspring are black;"
                                                                                              6
(b)
separate orange scallops produced from first cross / test cross orange with black;
some will produce only orange offspring;
these will be homozygous for orange allele/pure breeding;
                                                                                            2 max
                                                                                     Total: 8
```

Q20.

1000 . 10

```
Question 4
(a)
       parental genotype;
       gametes;
       offspring genotype;
       offspring phenotype;
                                  penalise once if other symbols used
(b)
       suffer from vitamin K deficiency / require too much vitamin K;
                                                                                          1
(c)
       warfarin will kill rats without resistance - homozygous recessive;
       homozygous dominant rats require too much vitamin K;
      heterozygous rats most likely to survive and produce offspring;
       only 50% of offspring will be heterozygous;
                                                                                          3 max
(d)
      results in a different codon / triplet;
       (may) result in change of amino acid;
       different primary protein structure;
       this may result in change in protein function;
       suitable example e.g. sickle cell anaemia;
                                                                                          3 max
                                                                                   Total: 11
```

Q21.

Q22.

Question 2

```
(a)
        correct parental genotypes;
        correct gametes;
        correct genotypes of offspring;
        correct phenotypes linked to genotypes;
                                                                                      [4]
(b)
        yellow shrunken homozygous;
        double recessive;
                                                                                      [2]
(c)
        (381 \times 3/16) = 71
                                 (36/71) = 0.507;
        (381 \times 1/16) = 24
                                 (9/24) = 0.375;
        1.80;
                                                                                      [3]
(d)
        greater than 0.5; allow ecf
                                                                                      [1]
(e)
        difference from expected not significant;
                                                        allow ecf
        because greater than 0.5;
        ratio phenotype is 9:3:3:1;
        (the small) observed differences are due to chance;
                                                                                 [2 max]
                                                                               Total [12]
```

Q23.

Question **Expected Answers** Marks 2 (a) (i) black red; 2 1 (ii) black copper red; 2 (iii) red copper; 3 2 (b) (i) test / back, cross; with, copper / AtAt / homozygous recessive; (ii) if all offspring red, homozygous; if some offspring copper, heterozygous; ref. equal proportions of offspring; mark (i) and (ii) together 4 max [Total: 10]

Q24.

- 3 (a) any four from
 - 1 thick / dehydrated / sticky, mucus;
 - 2 builds up in, lung / gut / airways; A excess of mucus..... R blocks up
 - 3 infections in lungs; A named infection
 - 4 scar / damage, lungs;
 - 5 mucus, prevents secretion (of digestive enzymes) from pancreas / blocks pancreatic duct;
 - 6 malnutrition / inadequate digestion / inadequate absorption; Rindigestion
 - 7 reduced, growth / development;
 - 8 excessively salty sweat / muscle cramps;
 - 9 mucus blocks sperm duct / males sterile; female neutral [4 max]
 - (b) gametes BX bX BX BY bX bY;

 offspring genotypes see table;

 offspring phenotypes see table;

 R phenotypes if no gender

 probability of CF daughter 1in 8 offspring / 1 in 4 daughters / 12.5%

 / 0.125;

gametes	BX	BY	bX	bY
ВХ	BBXX normal female	BBXY normal male	BbXX normal/carrier female	BbXY normal/carrier male
bX	BbXX normal/carrier female	BbXY normal/carrier male	bbXX CF female	bbXY CF male

[4]

(0)	3 4	triplet of bases / three bases,(in DNA) codes for an amino acid; R 'codon' re DNA base substitution alters code; base, addition / deletion, produces frame shift / subsequent triplets have altered	
	5	coding; ref. transcription;	
	6		max]
(d)	(i)	E has, AAG / GAA / 2As and 1G, missing / ora ;	[1]
	(ii)	E's polypeptide lacks one amino acid present in D's ; different primary structure ; may have different, secondary structure / tertiary structure / 3D shape ; [2 r	max]
		[Total	: 15]
Q25.			
8	1	CCa Bb X ChCa Bb;	
	2	CB Cb CaB Cab x CbB Cb CaB Cab;	
	3	offspring phenotypes: full black : full red : himalayan black : himalayan red : albino black : albino red ;	
	4	phenotype ratio: 6 : 2 : 3 : 1 : 3 : 1;	
	5/6	offspring genotypes in Punnett square ;;	[6]
		ecf if incorrect symbols penalise the parent genotypes (pt 1) and mark rest of cross up to max 4	
		ecf if one gene only used then mark to max 2	
		[Tota	l: 6]

Q26.

			[Total: 7]
7	(a)	allele different / alternative, form of a gene; A variety of a gene	
		(allele) that always expresses itself in the phenotype when present / (allele) which influences the phenotype even in the presence of an alternative allele / AW;	[2]
	(b)	parental phenotype; e.g. striped / long x striped / long A wild x wild	
		parental genotype; e.g. AaBb x AaBb	
		gametes; e.g. AB Ab aB ab	
		offspring genotypes ;;	
		offspring phenotypes; must be linked to genotypes	[6]
		accept other symbols if key used penalise once for no key but only if genetic cross works	

(c)	(i)	<u></u>					
			phenot	types of Dros	ophila meland	ogaster	
			grey body long wing	grey body vestigial wing	ebony body long wing	ebony body vestigial wing	
		observed number (O)	207	79	68	30	
		expected ratio	9	3	3	1	
		expected number (E)	216	72	72	24	
		0-E	-9	7	-4	6	
		(O - E) ²	81	49	16	36	
		(O-E) ²	0.38	0.68	0.22	1.50	
					7		[3]
2	(ii)	2.78; apply	y ecf				[1]
	(iii)	χ² value repres		lity of > 0.05			
		(probability sho	ows) difference	es due to cha	ance;		[2 max]
							[Total:14]

Q27.

		-		[]
7	(a)		parents, carriers / heterozygous ;	
			child homozygous recessive ;	
			1/4 / 0.25 / 25%, chance ;	
			mutation;	[3 max]
	(b)	(i)	gene technology / genetic engineering / description ;	[1]
		(ii)	glucagon;	[1]
		(iii)	low <u>blood glucose</u> concentration / during or after exercise ; R sugar	[1]
	(c)	9	foreign / non-self / cell recognition;	
			stimulates immune response / AW;	[1 max]
	(d)		parental genotypes L ^M L ^N x L ^M L ^N	
			gametes L ^M or L ^N L ^M or L ^N	\$
			parental genotypes and gametes for one	mark
			offspring genotypes LMLM LMLN LMLN L	NLN ;
			offspring phenotypes MM MN MN N	NN; [3]
1			penalise once for omission of L	

			[Total: 13]
3 0		less outbreeding / more inbreeding ; AVP; e.g. L ^M has selective advantage in Inuit environment	[3 max]
		high frequency of L ^M / low frequency of L ^N , compared to other populations; R just highest L ^M / lowest L ^N	
	(e)	Canadian Inuit, allele frequencies / LMLN ratio, different from others;	

Q28.

```
(b) marks for reasons only

Hb^A Hb^A
low – susceptible to / die from, malaria;

Hb^A Hb^S
high – no (full blown) SCA / have SC trait;
not, susceptible to / likely to die from, malaria;

Hb^S Hb^S
low – susceptible to / die from, SCA;

[4]
```

© UCLES 2010

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9700	41

(c) 1 USA malaria not selection pressure;

(a) variation / different form, of a gene;

- 2 Hb^S no advantage;
- 3 due to outbreeding;
- 4 genetic testing can lead to termination of pregnancy or testing / counselling, leads to not having children;

[2 max]

[1]

[Total: 7]

Q29.

```
(allele) that always expresses itself (in the phenotype) when present
           (allele) which influences the phenotype even in the presence of an alternative allele;
           gene
           length of DNA / sequence of nucleotides, coding for a (specific) polypeptide; A protein
                                                                                                       [2]
       (b)
                                                                        woman with TSC
             parental phenotypes
                                                  man without TSC
                                                                                Tt
                                                          tt
             parental genotypes
             gametes
                                                         all t
                                                                              Tort
             offspring genotypes
                                                          Tt
                                                                                 tt
             offspring phenotypes
                                                         TSC
                                                                             normal
             probability of child having TSC
                                                 50% / 0.50 / 1in 2;
                                                                                                       [3]
       (c) 1. spontaneous / random / chance;2. mutation of, gene / allele;
           3. AVP; e.g. named mutagen / detail of mutation
                                                                                                  [2 max]
                                                                                                [Total: 7]
Q30.
       (a) allele
            different / alternative, form of a gene;
                                                               A variety of a gene
            one of two or more alternative nucleotide sequences at a single gene locus;
                                                                                                   [1 max]
            (allele) that (always) expresses itself in the phenotype when present /
            (allele) which influences the phenotype even in the presence of an alternative allele;
                                                                                                        [2]
        (b) parental genotypes;
            gametes;
            offspring genotypes (in Punnett square) ;;
            offspring phenotypes linked to genotypes;
            ratio 9:3:3:1 linked to phenotypes;
                                                                                                        [6]
                                                                                                 [Total: 8]
```

Q31.

(a) dominant

6	(a)	(i)	accept answers in a genetic diagram where genotypes are linked to phenotypes 1 agouti allele / C ^a , dominant to black allele / C ^b ; ora 2 black parents homozygous recessive; 3 agouti parents heterozygous or homozygous;	[2 may]			
		500		[2 max]			
		(ii)	accept answers in a genetic diagram where genotypes are linked to phenotypes 1 yellow allele / C ^y , dominant to, black allele / C ^b ;				
			 ref. to modified 3:1; (homozygous) genotype C^y C^y, lethal / does not survive; 	[2 max]			
		(iii)	accept answers in a genetic diagram where genotypes are linked to phenotypes 1 yellow allele / C ^y , dominant to all others;				
			2 agouti / C ^a or black and tan / C ^{bt} , allele, dominant to black allele; A black allele recessive to all other alleles				
			3 yellow mice all heterozygous (must be stated);	[2 max]			
	(b) 1 cross (black and tan mouse) with, black mouse / homozygous recessive mouse 2 if all offspring black and tan then parent, C ^{bt} C ^{bt} / homozygous;						
	3 if some offspring are black (and some are black and tan) then parent, C ^{bl} C* / heterozygous;			[2 max]			
			п	otal: 8]			
Q32	•						
1	(a)	allele - variation / different form, of a gene;					
		dominant - (allele) always expresses itself (in the phenotype when present);					
	/6.1	il.	and the same of (OAO) are not the same of				
	(D)	the greater the number of (CAG) repeats the earlier the symptoms first appear / inversely proportional / negative correlation;					
		paired figures;					
	(c)	1 fe	ear of needles;				
	(0)	2. fear of positive result;					
		fear of effect of result on other members of family;					
			o desire to have children;				
			nancial / insurance, concerns / AW;				
			ossibility of false results;				
			ost of test;				
		8. n	ot worth having test because of no treatment;	[max 3]			
			П	Total: 71			

Q33.

(b) (i)

phenotype of fly	0	E	O-E	(O-E) ²	(O-E) ² E
red-eyed female	54	50	(+)4	16	0.32 ;
white-eyed male	46	50	(-)4	16	0.32;

0.64; allow ecf [3]

(ii) probability is greater than 0.05; A chi squared smaller than 3.84

no significant difference;

due to chance; [max 2]

[Total: 8]

Q34.

7 (a) centromere; [1]

(b) idea that different genes, are present/missing; R alleles
 different, proteins/poypeptides, produced/missing;

(c) XY;

$$X$$
 X_1 X $Y;$ XX $XX_1;$

normal Turner's; [4]

[Total:7]

Q35.

```
7 (a) symbols and key; e.g. A = NF allele and a = normal allele
       parental genotypes and gametes; e.g. parental genotypes Aa x aa
                                        gametes A a x a a
       offspring genotypes and phenotypes linked; e.g. Aa has NF and aa is
                                                  unaffected
                                                                                           [3]
   (b) spontaneous/random/chance;
       mutation of, gene/allele;
       AVP; e.g. named mutagen/detail of mutation/in oocyte/in sperm
                                                                                      [max 2]
   (c) compresses nerve;
       damages, myelin sheaths/Schwann cells;
       prevents, setting up of local circuits/saltatory conduction;
       stops Na+/K+ pumps from working;
       blocks blood supply;
       qualified; e.g. effect on, oxygen supply/glucose supply/ATP production
       AVP; e.g. may stop ion channels opening
                                                                                      [max 3]
                                                                                     [Total:8]
```

Q36.

```
7 (a) recessive
           only expressed in homozygote/two copies of the allele needed to be expressed/
           not expressed in heterozygote/not expressed in presence of dominant allele;
           change in the structure of, DNA/gene/allele
           change in, base/nucleotide, sequence;
                                                                                                  [2]
       (b) suitable symbols and key; e.g. A = allele for normal (non PKU)
                                          a = allele for PKU
           correct parental genotypes plus correct gametes;
           offspring phenotypes linked to correct offspring genotypes;
                                                                                                  [3]
       (c) 1
               fewer amino acids;
               change in primary structure; A different amino acid sequence
           3
               different, tertiary structure / 3D shape;
           4 ref. to active site of, PAH/enzyme, changed/absent;
           5 PAH/enzyme/protein, non-functional/AW; A different function
                                                                                             [max 3]
                                                                                           [Total: 8]
Q37.
    7 (a) gene
            length/section, of DNA
            sequence of, bases/nucleotides;
            coding for a, polypeptide/protein;
            different/alternative, form of a gene; A variety of a gene
```

occupying same, locus/position (on homologous chromosomes);

[4]

(b)

individual	phenotype	genotype	
1	В	I ^B I°	
2	A or B	IAI° or IBI°	
3	B or A	IBI° or IAI°	
4	A	I^ I°	

Individuals 2 and 3 must have different phenotypes and genotypes

[4]

[Total: 8]

Section_B

1.

```
do not credit marking points out of sequence
9 (a)
         prophase 1
         1
              idea of condensation of chromosomes;
         2
              homologous chromosomes pair up / bivalent formed;
         metaphase 1
         3
              homologous chromosomes / bivalents, line up on equator;
         4
              of spindle;
         5
              by centromeres;
         6
              independent assortment / described;
         7
              chiasmata / described;
         8
              crossing over / described;
         anaphase 1
         9
              chromosomes move to poles;
         10 homologous chromosomes / bivalents, separate;
              pulled by microtubules;
         11
         12 reduction division;
         metaphase 2
         13 chromosomes line up on equator;
         14 of spindle;
         anaphase 2
         15 centromeres divide;
         16 chromatids move to poles;
         17 pulled by microtubules;
         18 ref. haploid number;
```

[9 max]

allow 4 or 14 allow 11 or 17

```
(b)
    19
            change in, base / nucleotide, sequence (in DNA);
      20
            during DNA replication;
            detail of change; e.g. base, substitution / addition / deletion
      22
            frame shifts / AW;
      23
            different / new, allele;
            random / spontaneous;
      25
            mutagens;
            ionising radiation;
      26
                                                                                                   [6 max]
      27
            UV radiation / mustard gas;
                                                                                               [Total: 15]
  11 (a) 1. (amino acid) code is three, bases / nucleotides; A triplet code
                (gene) mutation; R chromosome mutation
                base / nucleotide, substitution / addition / deletion
            addition / deletion, has large effect (on amino acid sequence);
            5. frame shift;
            completely new code after mutation / afters every 3 base sequence which follows;
            substitution may have little or no effect / silent mutation;
            8. different triplet but same amino acid / new amino acid in non-functional part of protein;
            9. substitution may have big effect (on amino acid sequence);
            10. could produce 'stop' codon;
            11. sickle cell anaemia / PKU / cystic fibrosis;
            12. reference to transcription or translation in correct context; A description
                                                                                                          [8 max]
   (b) 13. (haemophilia) allele on X chromosome; A gene
        14. sex-linked;
        (haemophilia) allele recessive;
        16. man, homogametic / has one X chromosome;
        Y chromosome does not have blood clotting gene;
        only daughter(s) get his X chromosome;
        daughter(s) carrier(s) of (haemophilia) allele;
        20. grandson(s) 50% chance of having, (haemophilia) allele / haemophilia;
        granddaughter(s) 50% chance of carrying, (haemophilia) allele;
        allow following marks from diagram

    correct symbols; e.g. X<sup>H</sup> and X<sup>h</sup> explained
    man's genotype; e.g. X<sup>h</sup>Y ignore partner's genotype

    F1 (daughter's) genotype; e.g. X<sup>H</sup>X<sup>h</sup> ignore her partner's genotype
    F2 (grandson's) genotypes; e.g. X<sup>H</sup>Y X<sup>H</sup>Y both required

    F2 (granddaughter's) genotypes; e.g. X<sup>H</sup>X<sup>H</sup> X<sup>H</sup>X<sup>h</sup> both required or X<sup>h</sup>X<sup>h</sup> X<sup>H</sup>X<sup>h</sup> [7 max]
```

3.

2.

[Total: 15]

(a) 1. reduction division / (to) halve number of chromosomes / diploid to haploid / AW; homologous chromosomes pair up / bivalents form ; 3. ref. chiasmata / ref. crossing over; 4. homologous chromosome pairs / bivalents, line up on equator; independent assortment; spindle / microtubules, attached to centromeres;
 chromosomes of each pair pulled to opposite poles; 8. by shortening of, spindle / microtubules; 9. nuclear envelopes re-form; 10. cytokinesis / AW ; [6 max] (b) accept alternative symbols for alleles throughout frequency of sickle cell anaemia is highest in areas where malaria is common; sickle cell anaemia red blood cells cannot carry oxygen very well / AW ; A sickling blocks capillaries homozygous H^S / H^SH^S, have sickle cell anaemia / may die ;
 homozygous H^N / H^NH^N, have normal, Hb / red blood cells ; 15. heterozygotes, have sickle cell trait (sickle cell trait) red blood cells not (severely) affected; 16. malaria parasite / Plasmodium, affects red blood cells; 17. malaria lethal; 18. sickle cell trait people / heterozygotes, less likely to suffer from (severe effects of) malaria: 19. have selective advantage; 20. pass on both HN and HS;

because of sickle cell trait individuals;

21. malaria selects against, homozygous HN / HNHN;

sickle cell anaemia selects against, homozygous H^S / H^S H^S;
 idea that sickle cell allele is maintained within population

[Total: 15]

[9 max]